MDS Codes, NMDS Codes and their Secret-Sharing Schemes

Dimitris E. Simos*
INRIA Paris-Rocquencourt
Project-Team SECRET
78153 Le Chesnay Cedex, France
email: dimitrios.simos@inria.fr

Zlatko Varbanov
University of Veliko Tarnovo
Department of Information Technologies
2 T.Tarnovski Str, 5000, Bulgaria
email: zl.varbanov@uni-vt.bg

In this work, we consider some methods to generate secret-sharing schemes from MDS and near-MDS codes. MDS (and NMDS) codes exhibit close connections with secret-sharing schemes. These connections and respective construction methods are given in [5], [7]. We combine these methods with some recent results on MDS and NMDS codes ([4]), and in the aftermath we are able to construct secret-sharing schemes for new parameters.

Let $F_{q}=G F(q)$ be a Galois field and F_{q}^{n} be an n-dimensional vector space over F_{q}. A linear code of length n and rank k is a linear subspace C with dimension k of the vector space F_{q}^{n} (also denoted $[n, k]_{q}$ for short). Such a code will be called a q-ary code. The number of nonzero coordinates of a given vector $x \in F_{q}^{n}$ is called (Hamming) weight of the vector. An $[n, k, d]_{q}$ code is an $[n, k]_{q}$ code with minimum weight at least d among all nonzero codewords. An $[n, k, d]_{q}$ code is called maximum distance separable (MDS) if $d=n-k+1$. The Singleton defect of an $[n, k, d]_{q}$ code C defined as $s(C)=n-k+1-d$ measures how far C is away from being MDS. A code C with Singleton defect $s(C)=1$, that is a $[n, k, n-k]_{q}$ code is called almost MDS (AMDS for short) [2]. An $[n, k, n-k]_{q}$ AMDS code for which the dual code is also an AMDS code, that is $s(C)=s\left(C^{\perp}\right)=1$ is called a near-MDS code (NMDS for short) [3].

A secret-sharing scheme is a way of sharing a secret among a finite set of people or entities such that only some distinguished subsets of these have access to the secret. The collection Γ of all such distinguished subsets is called the access structure of the scheme. A perfect secret-sharing scheme for Γ is a method by which the shares are distributed to the parties such that:
(1) any subset in Γ can reconstruct the secret from its shares, and
(2) any subset not in Γ can never reveal any partial information on the secret (in the information theoretic sense).

In particular, secret sharing is said to be ideal if it is perfect and the size of the shares is equal to the size of the secrets. Secret-sharing schemes were first introduced by Blakley [1] and

[^0]Shamir [6] for the threshold case, that is, for the case where the subsets that can reconstruct the secret are all the sets whose cardinality is at least a certain threshold.

Construction 1 (Pieprzyk and Zhang [5]) Let G be a generator matrix of an $[n+1, k, n-$ $k+2]_{q}$ MDS code. Thus G is a $k \times(n+1)$ matrix over F_{q}. Set

$$
\begin{equation*}
\left(s_{0}, s_{1}, \ldots, s_{n}\right)=\left(r_{1}, \ldots, r_{k}\right) G \tag{1}
\end{equation*}
$$

where each $r_{j} \in F_{q}$. For any fixed $r_{1}, \ldots, r_{k} \in F_{q}, s_{0}, s_{1}, \ldots, s_{n}$ can be calculated from (1). These s_{1}, \ldots, s_{n} are the shares for participants P_{1}, \ldots, P_{n} respectively, and s_{0} is the secret corresponding to the shares s_{1}, \ldots, s_{n}.

This scheme is ideal (was proved in [5]), however the number of participants n can be at most q, and therefore is limited by the size of the field. Moreover, in the scheme proposed in [7] (also an ideal scheme, this time based on NMDS codes), this bound on the number of the participants was improved to $q+2 \sqrt{q}$.
Considering these properties, MDS and NMDS codes over large fields have to be searched in order to construct secret-sharing schemes having the maximum number of participants. For example, over F_{197} there exist [10,5,6] MDS and [8,4,4] NMDS self-dual codes [4]. These codes were derived from combinatorial constructions based on computational searches of solutions of diophantine equations. Applying these parameters, secret-sharing schemes with 9 and 7 participants can be generated (for the MDS and near-MDS code, respectively). For this field the the maximum possible number of participants is 197 (for MDS codes) and 225 (for NMDS codes).

References

[1] G.R. Blakley, Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS National Computer Conference, 313-317 (1979)
[2] M.A. de Boer, Almost MDS codes, Des. Codes Cryptogr., 9 (1996), 143-155.
[3] S. Dodunekov and I.N. Landjev, On near-MDS codes, J. Geom. 54 (1995), 30-43.
[4] I.S. Kotsireas, C. Koukouvinos and D.E. Simos, MDS and near-MDS self-dual codes over large prime fields, Adv. Math. Commun., 3 (2009), 349-361.
[5] J. Pieprzyk and X.-M. Zhang, Ideal Threshold Schemes from MDS Codes, ICISC'02 Proceedings of the 5th international conference on Information security and cryptology, Lecture Notes in Computer Science, 2587, Springer Berlin/Heidelberg, 253-263 (2003)
[6] A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612-613.
[7] Y. Zhou, F. Wang, Y. Xin, S. Luo, S. Qing and Y. Yang, A secret sharing scheme based on near-MDS codes, Proceedings of IC-NIDC2009, 833-836 (2009)

[^0]: *This work was carried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Programme. This Programme is supported by the Marie Curie Co-funding of Regional, National and International Programmes (COFUND) of the European Commission.

